
Semantic Human Mesh Reconstruction with Textures

Supplementary Material

We provide additional information and experiments about
our method. Below is a summary of the sections in the sup-
plementary:

• Sec. G reports the implementation details of SHERT.
• Sec. H displays more experiments and results.
• Sec. I discusses the limitations.
• Sec. J shows more available applications.

G. Implementation details
G.1. SNS

Algorithm. In Alg. 1, we describe the details of semantic-
and normal-based sampling.
Skinning weights. The skinning weight of a new vertex is
the average of the skinning weights of the two neighboring
vertices on the same edge.

G.2. Network Architecture

The architectures of our completion network and refinement
network are shown in Fig. S3.

G.3. Mask Dilation in Completion

The experiments show that the vertices located at the edges
of the removed triangle meshes may also be inaccurate,
leading to a negative effect on the quality of the completed
mesh. To tackle this problem, we dilate the hole mask, en-
abling the network to also fill in the surrounding areas of
the eliminated triangle meshes. This leads to smoother and
more realistic results.

G.4. Refinement

Feature Projection. We use camera parameters to query
the pixels corresponding to the current UV coordinates in
the image domain to find the corresponding image domain
features (refer to Fig. S1). We will concatenate the depth
of the projected vertex in camera space with the projected
features.
Smoothing. We observe that when the input mesh does not
align properly with the image and normal features, the pre-
dictions made by the network tend to introduce some noise,
resulting in minor protrusions on the refined mesh. In order
to reduce the occurrence of such distortions, we perform
Laplacian Smoothing [20] on the input mesh before using
it as input during inference. For the same reason, we also
smooth the supervisory data in training.
Iteration. During the iteration process of the refinement
network, the input image and the front-back normal maps
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Figure S1. Feature Projection. Noted that the image domain
features are projected to both the visible part and invisible part.

remain unchanged, and we only use the previous result gen-
erated by network as the new input.
Displacement Projection. Actually we use the projection
of displacement. Therefore, Eq. 1 and Eq. 9 in our code
should be as follows:

d =
(Ssample − Spose) ·Npose

∥Npose∥2
, (1)

Ldis = MSE(z − (Sc − Sl) ·Nl

∥Nl∥2
). (9)

Rendered images. We render images of THuman2.0 us-
ing orthogonal cameras. Generally, this does not consistent
with the real-world images and may have an impact on per-
formance in wild tests.

G.5. Face Substitution

FLAME to SMPL-X. We first transform the detailed faces
of EMOCA [14] to the UV domain since it has more ver-
tices than the standard FLAME [37] model. We then trans-
form the detailed FLAME UV position map to SMPL-
X [47] representation. The corresponding detailed sub-
SMPLX face can be resampled from the transfered UV
map. We clip the resampled face and align it with the face of
sub-SMPLX, then performe vertex substitution. The whole
process is shown in Fig. S2.
Face Alignment. We first rotate both the detailed face and
sub-SMPLX face to align them with the positive z-axis,
based on their respective average normal vectors in the x,
y, and z directions. We then normalize them to a 0-1 space
through translation and scaling. To achieve accurate align-
ment, we use the ICP algorithm [7]. Finally, we transform
the aligned detailed face back into the coordinate space of
the original sub-SMPLX.

1



Algorithm 1: Semantic- and Normal-based Sam-
pling

Input: Target surfaceMt, sub-SMPLXMx,
query-range r, angle-threshold tangle,
area-threshold tarea, edge-threshold tedge,
connectivity-threshold tconnect.

Output: Partially sampled meshMs, hole mask
Ho.

Function MeshCulling(Mx,Ms, tangle, tarea,
tedge):

List invalid;
foreach face f inMs do

Get the corresponding face fx ofMx;
Compute the normal angle anglepose
between f and fx;

Compute the area ratio areapose between f
and fx;

Compute the edge ratio edgepose between
the longest and the shortest edges of f ;

if anglepose >tangle ∨ areapose
>tarea ∨ edgepose >tedge then

foreach vertex p in f do
invalid.append(index(p));

Ms ← DeleteFaces(invalid);
returnMs;

CopyMx toMs;
List invalid;

foreach vertex p inMs do
direction← CalNormal(p);
if p is not inside the target surfaceMt then

direction← direction · (−1);
Find the intersection point ip withMt starting

from p along direction within range r;
if ip does not exist then

invalid.append(index(p));

else
p← ip;

Ms ← DeleteFaces(invalid);

Ms ←MeshCulling(Mx,Ms, tangle, tarea, tedge);

Mx,Ms ← LBSToStar(Mx,Ms);

Ms ←MeshCulling(Mx,Ms, tangle, tarea, tedge);

Ms ← FaceConnectivityCheckAndDelete(Ms,
tconnect);
Ho ← GenerateHoleMask(Ms);
Ms ← LBSBack(Ms);

returnMs,Ho;
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Figure S2. Face Substitution. We transform the detailed
FLAME-based face model to sub-SMPLX representation to
achieve face substitution.

Edge Smoothing. Despite already aligning the detailed
face and sub-SMPLX face through affine transformations,
there is still a noticeable gap at the joint of the face and
head. We resample the mesh between the face and the head
using the corresponding UV position map and UV mask and
reduce the gap at the joint through smoothing processing.
The results are shown in Fig. S4.

G.6. Texture Diffusion

Partial Texture. We obtain the partial texture by projection
(in Sec. G.4). In order to prevent the front colors from
projecting onto invisible areas, we send a ray from each
vertex along the camera’s angle of view to detect the vis-
ible set. If the ray intersects with the body mesh, the cor-
responding vertex is considered invisible. Additionally, we
use EMOCA [14] to predict facial textures for better results.
Text Prompts. We use BLIP2 [35] to generate text prompts
corresponding to textures sampled from rendered images in
Thuman2.0 for diffusion training.
Inference Details. We found inaccurate results at the edges
of the projection, so we conduct dilation on the projected
mask. Moreover, we use the facial texture predicted by
EMOCA [14] since the projected one frequently does not
match the mesh. Lastly, we provide an iterative optimiza-
tion scheme that allows users to manually recognize the sec-
tions to be optimized. The effects of different inpainting
strategies are shown in Fig. S8. Sometimes the front and
back of clothing may look similar, so we can also project
the front color to the back of the mesh and conduct iterative
optimization manually. This approach can achieve better
results at the texture seams.

H. Additional Experiments
The influence of mask dilation. We use mask dilation
to reduce the impact of the edges of the culled meshes in
Sec. G.3. As shown in Fig. S5, as the degree of dilation
increases, the predicted results for the holed areas and its
neighboring parts become smoother, but at the same time,
more geometric details belonging to the original input are
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lost.
The completion results of the face, hands, and feet. The
results are shown in Fig. S6
The refine iteration for textured mesh. The results are
shown in Fig. S7
The influence of smoothed inputs for refinement. We
demonstrate the effects of smoothed inputs for refinement
in Fig. S9. The results indicate that while smoothing has
minimal impact on the ultimate refinement of details, it is
effective in curbing the generation of noise.
The effect of normal quality in refinement. We train the
refinement network with the normal maps of THuman2.0
[70] scans, which has a resolution of 1024×1024. However,
the predicted normal maps of ECON [65] are 512 × 512.
Such difference can lead to the degradation of refinement
performance. Additionally, the quality of the normal and
the degree of matching with the input geometry will also
affect the final results. Experiments are carried out to show
such effects on refine results, as shown in Fig. S10.
Registration on incomplete and incorrect inputs. The
results are shown in Fig. S11
More comparisons. We present more comparisons for
monocular image reconstruction in Fig. S12. We use chal-
lenging inputs to comprehensively evaluate the performance
of SHERT.
More inpainting results. We present more inpainting re-
sults on in-the-wild images in Fig. S13. The challenging
inputs are also being used to demonstrate the performance
unbiasedly.

I. Limitations
Incorrect sampling in SNS. SNS cannot guarantee that all
of the unremoved faces are correct. When the target mesh
is geometrically inseparable, SNS may incorrectly register
a part of the body onto an incorrect surface.
Folded surfaces. Due to not using LBS [34] for deforma-
tion during completion, but instead using normal-based off-
sets, there could be some folded surfaces, leading to dis-
crepancies with the desired outcome.
Loose clothing, hair, and feet. Due to the limited expres-
siveness of the SMPL-X template we used, it is difficult for
SNS to fully capture the geometry of loose clothing. Addi-
tionally, SHERT cannot accurately model long hair. Lastly,
replacing the feet with the SMPL-X template resulted in an
inability to reconstruct normal shoes in the final result.
Smoothed details. Some details of sampling failure dur-
ing SNS may be lost during completion. At the same time,
the smoothing used in refinement also smoothes out a small
amount of detail.
Discontinuity of texture seams. Due to texture prediction
being carried out on unfolded UVs, it is difficult to ensure
consistency of the content at the edges of the seams, as they
are not spatially adjacent.

The corresponding results are shown in Fig. S14 and Fig.
S13.

J. Applications
Mesh down-sampling. Because we have retained the orig-
inal vertex ordering during the subdivision process, our rep-
resentation supports direct down-sampling of the predicted
results without any additional computation by using the pre-
defined SMPL-X model (refer to Fig. S15). The low-
resolution results can preserve the geometric details, ma-
terial and mesh quality well.
3D face substitution. As shown in Fig. S16, SHERT en-
ables direct 3D face substitution, allowing the face corre-
sponding to the input image to be transferred to any existing
mesh. With manual optimization, the facial texture can also
be accurately transferred.
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Figure S3. Network Architecture. The inputs are: (1) (1024,1024,15), hole mask, holed uv, holed displacement uv, sub-smplx template
normal uv, sub-smplx template uv. The sub-smplx template is in star pose. (2) (1024,1024,9), image, front normal map, back normal map.
(3) (1024,1024,12), smoothed uv, normal uv, posed sub-smplx uv, posed sub-smplx normal uv.

Figure S4. Face edge smoothing. The first line shows the results after face substitution, the second line shows the replaced edges, and the
third line shows the smoothed results.
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Figure S5. Mask dilation in completion. We display the completed results of different hole masks in the first line. The corresponding
dilated hole masks are shown below.
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Figure S6. The completion results of the face, hands, and feet.
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Figure S7. The refine iteration for textured mesh.
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Figure S8. Texture Inpainting. We present four different strategies for inpainting the partial texture using SHERT. Green: Using the
projected partial texture and mask directly. Yellow: Using the dilated mask. Red: Using the substituted facial texture. Blue: Manual
iterative optimization. The corresponding rendering results are displayed on the right.
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Figure S9. The influence of smoothed inputs for refinement. We show the refinement results of the original input in the first line and the
smoothed input in the second line.
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Figure S10. The effects of normal quality. We combine the mesh and normal obtained from the THuman2.0 scan, as well as the mesh
and normal obtained through econ, to display four different results using the refinement network. The first line (A, B) uses the scan-based
completed mesh as input, while the second line (C, D) uses the ECON-based completed mesh. The results shown on the left (A, C) utilize
the scan-rendered normal map, while the ones on the right (B, D) utilize the ECON-predicted normal map. Green: When using matched
normal maps (A, D), the enhancement of details is consistent with the geometric features of the model, resulting in stacked optimization
results. However, when inconsistent inputs are used (B, C), the spatial position of the normal features does not correspond exactly to the
geometric features of the mesh itself, resulting in a misalignment between the optimized details and the original geometric details. Yellow:
When clear and detailed normal map (A, C) is inputted, the geometric details corresponding to the normal map can be optimized well,
regardless of whether the input mesh matches the normal map. Conversely, if the details on the normal map are not clear enough (B, D),
the details on the final optimized results will also be relatively blurred. Red: When there are noise in the normal map (A, C), the refinement
network mistakenly adds this noise as details to the inputs. Conversely, a clean normal input (B, D) can effectively avoid such situation.
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Target DRN-ICP RPTS Completion
(Ours)MDAFast-RNRR

Figure S11. Registration results for incomplete and incorrect inputs. The results indicate that the SNS and completion processes of
SHERT have significantly better robustness than other registration methods (N-ICP [6], RPTS [36], Fast-RNRR [69], DR [46], MDA [30]).
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Figure S12. Comparisons for monocular image reconstruction on in-the-wild images. We compare the reconstruction quality of various
methods including PIFu [55], PIFuHD [56], PaMIR [71], ICON [64], ECON [65], and our SHERT. SHERT takes the ECON’s result as
the target surface. We mainly showcase the performance of SHERT when facing the complex pose (line 1-2), the long-haired person (line
3-4), and the incomplete input (line 5-6).
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Figure S13. Texture inpainting results on in-the-wild images.
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Figure S14. Limitations.
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Figure S15. Mesh down-sampling. SHERT makes it possible to efficiently generate high-fidelity low-resolution models from a high-
resolution model by using pre-defined human model templates.
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Figure S16. 3D face substitution.
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