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Figure 1. Semantic Human mEsh Reconstruction with Textures (SHERT): (a) Given a target surface and the corresponding semantic
guider, (b) SHERT reconstructs a detailed semantic model, which has stable UV unwrapping and skinning weights with high-quality
triangle meshes. (c) It can either sample a texture map from the target surface or generate from the text prompts. (d) Based on our semantic
representation, SHERT allows for high-precision facial reconstruction and animation of the body, face, and hands. (e) Moreover, SHERT
is capable of inferring a fully textured avatar from a monocular image.

Abstract

The field of 3D detailed human mesh reconstruction has
made significant progress in recent years. However, current
methods still face challenges when used in industrial appli-
cations due to unstable results, low-quality meshes, and a
lack of UV unwrapping and skinning weights. In this paper,
we present SHERT, a novel pipeline that can reconstruct se-
mantic human meshes with textures and high-precision de-
tails. SHERT applies semantic- and normal-based sampling
between the detailed surface (e.g. mesh and SDF) and the
corresponding SMPL-X model to obtain a partially sampled
semantic mesh and then generates the complete semantic
mesh by our specifically designed self-supervised comple-
tion and refinement networks. Using the complete seman-
tic mesh as a basis, we employ a texture diffusion model to
create human textures that are driven by both images and
texts. Our reconstructed meshes have stable UV unwrap-
ping, high-quality triangle meshes, and consistent semantic

information. The given SMPL-X model provides semantic
information and shape priors, allowing SHERT to perform
well even with incorrect and incomplete inputs. The se-
mantic information also makes it easy to substitute and ani-
mate different body parts such as the face, body, and hands.
Quantitative and qualitative experiments demonstrate that
SHERT is capable of producing high-fidelity and robust se-
mantic meshes that outperform state-of-the-art methods.

1. Introduction

Recovering highly realistic details and textures of a human
mesh from monocular images is crucial for various applica-
tions such as gaming, movies, cartoons, VR, virtual try-on,
and digital avatars. Current approaches [2, 3, 5, 24, 25, 27,
39, 54, 55, 60, 62, 63, 66, 69] primarily focus on the recov-
ery of the geometric details that are associated with images,
but their results are not yet practical for real-world appli-
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cations. Recent advancements in parametric and explicit
clothing models [13, 20, 29, 50, 61, 74] have shown promise
in clothing reconstruction. However, they have limitations
in accurately fitting different geometries and details. Im-
plicit reconstruction approaches [24, 54, 55, 62, 63, 66, 69]
excel at capturing clothing details but perform poorly in
hands and face reconstruction. They may also generate in-
complete and geometrically inseparable results.

In this work, our goal is to reconstruct fully textured se-
mantic human meshes through given detailed surfaces and
corresponding semantic guiders. Our semantic human mesh
is complete, animatable, and edit-friendly for both users and
designers. It ensures that each vertex has deterministic se-
mantic information and predefined skinning weight. This
allows for easy substitution and animation of different body
parts such as the face, body, and hands. The semantic infor-
mation also guarantees stable and reasonable UV unwrap-
ping, which is advantageous for editing and image-based
texture generation.

Specifically, we propose SHERT, which generates a se-
mantic human mesh from the detailed surface and its cor-
responding SMPL-X [46] model and optionally infers tex-
tures from images or colored surfaces. SHERT has four
main processes. 1) Sampling, SHERT applies semantic
and normal-based sampling to obtain a partially sampled se-
mantic mesh based on the input detailed surface and SMPL-
X model. We subdivide the original SMPL-X model to
better capture the human details. 2) Completion, a self-
supervised network is proposed to complete the partially
sampled mesh. The network works in the 2D UV domain,
which converts the 3D completion task into a 2D inpainting
task. 3) Refinement, the origin image and front-back nor-
mal maps are used to enhance the geometry details. 4) Tex-
ture, our semantic human mesh is projected to the origin
image in order to generate the partial texture map. Then we
adapt the diffusion framework for text-driven partial texture
inpainting and generation. The powerful generation abil-
ity of pre-trained diffusion model enables textures with rich
clothing details and clear facial expressions.

Extensive experiments have been conducted on both
datasets and in-the-wild images. The quantitative and quali-
tative results show the robustness and superior performance
of SHERT in reconstructing high-fidelity semantic human
meshes and generating various high-resolution textures.

In summary, the main contributions of this work include
four-fold.
• We introduce SHERT, a novel pipeline to reconstruct

high-quality semantic human meshes from the detailed
3D surfaces, represented either explicitly as meshes, or
implicitly as signed distance field (SDF). SHERT is also
capable of predicting robust and fully textured avatars
with high-fidelity faces from monocular images.

• We propose a semantic- and normal-based sampling

method (SNS) and a self-supervised mesh completion
network to achieve non-rigid 3D surface registration. The
approach has the capability to process incomplete and in-
accurate inputs by leveraging SMPL-X human priors.

• We present a self-supervised mesh refinement network
working in the UV domian. It utilizes the images and
front-back normal maps to improve the geometric mesh
details.

• We use a diffusion model to infer high-resolution human
textures from input images. The model can also accom-
plish text-driven texture inpainting and generation.

2. Related Work

2.1. Monocular 3D Human Reconstruction

Clothed Human Reconstruction. Most of the current
CNN-based monocular 3D clothed human shape estima-
tion methods can be divided into two categories: explicit-
based [2–5, 29, 72, 73] and implicit-based [6, 13, 24–
27, 39, 54, 55, 62, 63, 66, 69] approaches, based on their
representations. Explicit-based approaches usually infer
the 3D offsets on top of the parametric human model
[41, 46, 49, 64]. However, these methods are difficult to ap-
ply to flexible human topologies and cannot capture details
well. Implicit-based approaches have the advantage of rep-
resenting arbitrary 3D clothed human shapes that are free
from the limitations of parametric human models. There
are also some works [14, 26, 39, 62, 63, 69] that mix the im-
plicit and explicit representations to achieve the detailed and
robust 3D clothed human reconstruction. But both implicit-
based and mixed methods still cannot maintain the stability
of the human body shape well, often resulting in problems
such as blurring and missing local body parts in the pre-
dicted results. Some methods [13, 20, 29, 50, 61, 74] pro-
pose additional parametric or implicit clothing models to fit
loose clothes. These clothing models often struggle to accu-
rately capture the details present in the images. Neverthe-
less, they are still useful for generating rough approxima-
tions of the clothing. Despite considerable progress made
in monocular human reconstruction capture, there are still
certain constraints, especially in terms of reliability, avail-
ability, and user-friendliness.
Texture Prediction. Previous works [6, 14, 25–27, 44, 54,
58] have also focused on predicting image-based human
textures. However, the current emphasis of implicit-based
methods [6, 14, 25–27, 54] is still on predicting vertex col-
ors, which cannot be easily converted into usable texture
maps for industrial applications. DINAR [58] proposes neu-
ral textures for modeling human avatars and achieves tex-
ture inpainting by utilizing the diffusion framework. Nev-
ertheless, the neural texture is highly coupled with human
avatars, and the resolution is relatively low.
Face Reconstruction. In recent years, parameterized face
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Figure 2. Overview of SHERT for monocular image reconstruction. Given an RGB image I, SHERT first infers the detailed mesh Mt

and corresponding sub-SMPLX model Mx. It then applies SNS to obtain the partial semantic mesh Ms (in Sec. 3.2). The Completion
Net infers Mc by filling the UV holes in Ms (in Sec. 3.3). Image and normal maps are utilized to generate Mr , which contains sharper
geometry details (in Sec. 3.4). Finally, SHERT uses a diffusion model to achieve text-driven texture inpainting and generation (in Sec.
3.5).

models [9, 10, 36, 47] have been widely used in monocu-
lar face reconstruction algorithms [15, 18, 19, 56, 75], con-
tributing to the success of achieving realistic high-quality
reconstruction results. In light of the incorporation of
FLAME [36] into SMPL-X [46], we can utilize high-quality
facial reconstruction results from previous works to en-
hance the accuracy and realism of the SMPL-X based hu-
man body reconstruction results.

2.2. Non-rigid 3D Registration

Non-rigid 3D surface registration approaches [7, 11, 23, 30,
35, 45, 65, 67] usually compute a deformation that aligns
a source surface with a target surface [16]. SHERT aims
to transfer the semantic information of parametric human
models to the corresponding detailed surfaces through reg-
istration. However, existing methods mainly focus on the
precise registration of the source and target, while the tar-
get detailed human surfaces in real-world tasks often have
incomplete and erroneous data.

3. Method
SHERT is capable of reconstructing a high-fidelity fully
textured semantic human mesh based on a pair of detailed
3D surface and corresponding SMPL-X [46] model. Our
results have high robustness and will not result in missing
body parts in despite of the incomplete inputs. Furthermore,
the semantic mesh ensures that each vertex has determinis-
tic semantic information and predefined skinning weights,
making it possible to replace and animate the human face,
body, and hands. SHERT can also generate realistic hu-

man textures from texts and images. These features make
it easy for users and designers to use or further edit our re-
sults. To achieve this, SHERT first subdivides the SMPL-X
model to improve the accuracy in capturing human details
(in Sec. 3.1) and then applies the semantic- and normal-
based sampling to obtain a partially sampled mesh (in Sec.
3.2). We complete the partial result using a self-supervised
mesh completion network (in Sec. 3.3), and finally enhance
the geometry details through refinement (in Sec. 3.4). In
addition, SHERT uses a diffusion model for text-driven hu-
man texture inpainting and generation (in Sec. 3.5).

3.1. Subdivided SMPL-X model

In this work, we use SMPL-X as the semantic guider.
SMPL-X is a parameterized body model that combines
SMPL [41] with the FLAME [37] head model and the
MANO [52] hand model. It is parameterized with shape and
pose, has 10, 475 vertices and 54 joints, including joints for
the neck, jaw, eyeballs, and fingers. The SMPL-X model
provides basic skinning weights and corresponding seman-
tic information for each vertex.

SHERT defines the sub-SMPLX based on SMPL-X
since 10, 475 vertices are not sufficient to accurately rep-
resent the details of the human body and clothing, such as
facial details and clothing wrinkles. Taking into considera-
tion both the expressiveness of the model and computational
cost , we apply the mid-point subdivision algorithm twice
on a standard SMPL-X model (with eyeballs removed) to
obtain the sub-SMPLX with 149, 921 vertices and 299, 712
faces.
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Figure 3. Explicit and implicit sampling. a) SNS shoots a ray
from the starting vertex along the vertex normal to locate the in-
tersection point with the target surface. b) SNS takes samples at
fixed intervals along the vertex normal ray and search for the point
that is closest to the zero isosurface.

3.2. Semantic- and Normal-based Sampling (SNS)

Our objective is to accurately predict the non-rigid deforma-
tion between a source surface and a target surface. Given a
source surface Mx, which is represented as a sub-SMPLX
in our work, and the target surface Mt, we learn a mapping
function D : M149921×3

x → M149921×3
s such that Ms can

be aligned with Mt through the learned mapping in geom-
etry, and ignoring the incorrect parts.

Specifically, we obtain a partially sampled mesh through
a sampling scheme based on the vertex normals N149921×3.
Starting from a point on Mx, we search for the intersection
point with the target surface Mt along the vertex normal
ray. We can extend the sampling scheme to implicit surfaces
with constant step Ray Marching [28, 48], shown in Fig. 3
and Fig. 4.

It should be noted that SNS does not always return satis-
factory results since the ray may not intersect with the tar-
get surface. We need to locate and label the vertices that
have failed to register. In addition, due to the large geomet-
ric differences and the possibility of incorrect alignment,
the sampling scheme may retrieve incorrect results, which
should also be detected. In order to remove incorrect points
and triangle meshes from the sampled results, we calcu-
late θ (the angle between the normal vectors of the sampled
triangle mesh and the corresponding sub-SMPLX triangle
mesh), s (the area ratio between the sampled triangle mesh
and the corresponding sub-SMPLX triangle mesh), and r
(the edge ratio between the longest and shortest edges of
the sampled triangle mesh) for each triangle mesh in the
sampled result. We then perform mesh culling by removing
low-quality triangle meshes that have at least one indicator
exceeding the threshold among the three mentioned above.
Finally, we perform a connectivity check on the processed
sampled mesh and remove the sets with a number of con-
nected triangle meshes less than g. By default, we set θ = 2,
s = 3, r = 3, and g = 500.

We found that culling meshes only in the current pose
would result in unreasonable deformations in human ani-
mation tasks. Therefore, SNS repeats the processing above
in the canonical space. This ensures that we remove almost
all unreasonable sampling results and obtain the partial se-

Marching Cubes
SNS

(Implicit sampling)
SNS

(Mesh culling) SNS + Completion

Resolution: 700
Vertices: 165330
Faces: 330652

Samples for each ray: 200
Vertices: 149921
Faces: 299712

Figure 4. SNS in the implicit field. We compare the performance
of SNS and the Marching Cubes algorithm [42] in the implicit
field predicted by the multi-view PIFu [54]. The results show that
our SNS and completion network correctly reconstruct the implicit
field and obtain a smoother surface compared to Marching Cubes.

mantic mesh Ms.

3.3. Self-supervised Mesh Completion

In Sec. 3.2, the vertices that failed to register have resulted
in holes in Ms. Currently, there are many mesh comple-
tion algorithms [12, 31–33, 40] that can fill in these mesh
holes. However, these algorithms cannot be well adapted
to our semantic reconstruction task due to the strong con-
straints on the number and relative positions of vertices in
our representation in Sec. 3.1.

Therefore, we transform the partially sampled mesh into
the UV domain [5, 17, 71] according to the semantic infor-
mation. As a result, we convert the mesh completion task in
3D space into an inpainting task on a 2D image. Then, we
design a self-supervised completion network that can fill in
the holes of the partially sampled mesh. As shown in Fig. 5,
by adding a random hole mask Hr on the partial UV posi-
tion map, we can obtain trainable pairs, which has a consis-
tent distribution as the missing parts of the sampled mesh.
The manually masked parts can provide the network with
consistent supervision information as the input parts. This
completion network is capable of generating robust meshes
while maintaining both mesh quality and semantic consis-
tency in the final results (refer to Fig. 6).

To further decrease the learning difficulties, we trans-
form all incompletely sampled meshes to canonical space
when facing the diverse range of poses and clothing styles.
We believe that this approach has the potential to miti-
gate the challenges in problem-solving, as completion is no
longer affected by pose and body shape. Meanwhile, since
the sampled points are located on the normal ray of the sub-
SMPLX vertices, we represent the deformation relative to
sub-SMPLX as an offset based on the vertex normal. The
transformed UV position map S can be presented as:

d =
Ssample − Spose

Npose
, (1)

S = Scano +Ncano · d, (2)

where Ssample denotes the partial UV position map of the
sampled mesh. Spose and Scano refer to the UV position
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Figure 5. Completion network. The completion network trans-
forms the result of SNS into canonical space and predicts the holes
in the UV domain.

maps of the original posed sub-SMPLX and the canonical
sub-SMPLX respectively. Npose and Ncano are the corre-
sponding UV normal maps.

The complete UV position map S and the input com-
bined hole mask Hsup are calculated by:

Hsup = Hr · (1−Ho) +Ho, (3)

S = Scano +Ncano · [ d · Ho + d · (1−Ho)], (4)

where Hr and Ho denote the randomly added hole mask
and the hole mask generated by SNS respectively. d ∈
RH×W×3 is the estimated displacement UV map. The com-
plete mesh Mc is resampled from S and then transformed
to the original pose space.

The primary loss used in our completion network is as
follows:

Sp = Scano +Ncano · [d · Hsup + d · (1−Hsup)], (5)

Linp =

∥∥(Sp − S) · (Hsup −Ho)
∥∥2
2∑

i,j(Hsup −Ho)i,j
. (6)

We find that completing the face, hands, and feet is much
more difficult than other parts of the body, so we use the cor-
responding parts of sub-SMPLX for replacement. Further-
more, SHERT allows for the use of FLAME-based meth-
ods such as EMOCA [15] to replace the facial region in our
completion results, enhancing the accuracy and realism of
the facial details.

3.4. Self-supervised Mesh Refinement

After completing the mesh, we have already reconstructed
a semantic mesh with extremely high levels of detail. How-
ever, some geometric details may be lost during the SNS
and completion process. Therefore, we design an additional
self-supervised refinement network to further optimize the

Target(ECON) Ours(SNS + Completion)

Figure 6. The robustness of SNS and Completion Network. We
present our complete meshes, which are reconstructed using the
predictions of ECON [63] from in-the-wild images. Distinguish-
ing itself from previous registration methods, SHERT has the ca-
pability to effectively process scenarios where the inputs are in-
complete, inaccurate, or contain errors by leveraging SMPL-X hu-
man priors.
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Figure 7. Refinement network. The features extracted from the
image and front-back normal maps are projected to the UV do-
main. These projected features are subsequently combined with
the input UV position map to generate a refined mesh.

mesh’s details (e.g. cloth wrinkles, subtle deformations of
body movements) using the image and normal maps. The
input normal maps can be obtained either by rendering the
scanned model or by using prediction networks. Our re-
finement network follows a U-Net [53] architecture and is
capable of predicting a displacement UV map, denoted as
z ∈ RH×W×3, in order to optimize the complete mesh Mc.
Since the input image and normal maps are not in the UV
domain, we utilize a separate network to extract the image
domain features and then project them to UV domain.

In order to guide the network in learning the potential
correspondence between the input features and mesh de-
tails, we apply Laplacian Smoothing [21] on the existing
complete meshes, as shown in Fig. 7. The smoothed mesh
Ml is used as input to the network, and the original mesh
Mc is used for supervision.

Given the image I, front-view normal map Nf , back-
view normal map Nb, and the corresponding complete UV
position map Sl, the projected feature F is typically repre-
sented as

F = P(F(I,Nf ,Nb), Sl, c), (7)

where c represents the camera parameters, F denotes the
image domain feature extraction network, and P is the pro-
jection function that can project the image domain features
to the UV domain according to the camera parameters and
the 3D coordinates of points on Sl.
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Figure 8. Texture diffusion. We use two strategies to finetune the diffusion model for text-driven texture repainting and inpainting
separately. During inference, instead of just using random noise, the encoded partial texture map and mask can be manually added to the
latent features to preserve the original information of the input. Additionally, we use the super resolution method Real-esrgan [59], which
can specifically optimize both the body and face, to further enhance the final outputs.

The UV position map Sr of the refined mesh Mr is
given by

Sr = Sl +Nl · z, (8)

where z ∈ RH×W×3 represents the predicted displacement
UV map of the refine network, Sl and Nl are the UV posi-
tion map and normal UV map of Ml respectively.

The loss we used in refine network can be represented as

Ldis = MSE(z − Sc − Sl

Nl
), (9)

Lnormal = MSE(Nr −Nc), (10)

where Sc is the UV position map of Mc. Nr and Nc denote
the normal UV maps of Mr and Mc respectively.

Moreover, the refine network can be iteratively employed
by users to enhance the mesh details according to their de-
sired level (refer to Fig. 11).

3.5. Text-driven Texture Inpainting and Generation

In Sec. 3.4, all the reconstructed meshes share the same
semantic information from SMPL-X. This means that when
the models are unfolded to the UV domain, vertices with
the same semantic information will be projected to a fixed
UV position, resulting in a stable texture map that allows
for repainting and transferring textures. To perform texture
inpainting on incomplete human body textures and generate
high-quality human body textures driven by text, we fine-
tune the Stable Diffusion model [51] with ControlNet [70],
similar to the approach taken by Dinar [58].

As our reconstructed semantic mesh closely matches the
scanned model’s geometry, we can use the ICP algorithm
[8] to register the vertex colors from the scanned model
onto our result. This enables us to convert the texture maps
into the SMPL-X format. As shown in Fig. 8, we obtain a
partial texture map from the input image based on the se-
mantic mesh and camera parameters and hope to generate
the invisible parts. ControlNet enable us to add conditional

inputs (partial texture maps) to the generation of the diffu-
sion network at a low cost. We use two strategies to fine-
tune the diffusion model, distinguished by whether to take
the encoded partial texture map and mask as the additional
inputs [1]. During the inference process, we can directly
input partial texture maps into the ControlNet and generate
various results by adding random noise. Alternatively, we
can enhance the preservation of existing information in im-
ages by concatenating the encoded partial texture maps and
masks with the latent features. Although Stable Diffusion
has not worked with UV-parameterized images before, the
well-designed UV parameterization keeps the shapes of the
face, body, and limbs stable, ensuring a learnable space for
the model. The texture map for the body and limbs focuses
more on color and patterns rather than shapes, also resulting
in excellent outcomes when cropped with a mask.

4. Experiments
4.1. Datasets and Networks

Training data. The completion and refinement networks
are trained using the first 499 scans of THuman2.0 [68].
During the training of the completion network, we ran-
domly choose one of the remaining 498 masks as a random

Method CAPE[43] THuman2.0[68]
P2S↓ Chamfer↓ Normal↓ P2S↓ Chamfer↓ Normal↓

PIFu[54] ∗ 2.1137 1.6537 0.0755 2.5493 2.3640 0.1042
PIFuHD[55] 3.7846 3.5787 0.1002 3.0772 3.1808 0.1207
PaMIR[69] ∗ 1.4520 1.2241 0.0610 1.5439 1.3311 0.1102

ICON[62] 0.8855 0.8609 0.0347 1.0361 1.0874 0.0607
ECON[63] 0.9403 0.9386 0.0374 1.1304 1.2081 0.0661
2K2K[24] † - - - 2.5342 2.6165 0.1030

Ours (ICON-comp) 0.8550 ↑ 0.8107 ↑ 0.0359 1.0459 1.0465 ↑ 0.0604 ↑
Ours (ICON-refine) 0.8633 0.8112 0.0380 1.0442 ↑ 1.0468 0.0603 ↑
Ours (ECON-comp) 0.8561 ↑ 0.8242 ↑ 0.0378 1.1255 ↑ 1.1420 ↑ 0.0672
Ours (ECON-refine) 0.8581 0.8144 ↑ 0.0398 1.0630 ↑ 1.0430 ↑ 0.0649 ↑

Table 1. Quantitative evaluation for monocular image recon-
struction. We evaluate the performance of our completion results
(comp) and refinement results (refine) by comparing them with
state-of-the-art methods. ∗ methods are re-implemented in [62]
to ensure a fair comparison. † method has only been tested with
human-facing-forward images. ↑ and ↑ indicate the improvement
achieved through completion and refinement, respectively.
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Figure 9. Qualitative comparison for monocular image reconstruction on in-the-wild image. For each method, we present two views
of the reconstructed results. SHERT demonstrates the ability to handle challenging poses while providing clear details of facial and hand
geometry.
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Figure 10. Qualitative comparison for registration on THuman2.0. We compare the registration quality of various methods including
N-ICP [7], RPTS [35], SVR-L0 [23], Fast-RNRR [67], DR [45], MDA [30] and ours SNS. The holes present in our result are the eliminated
faces, as described in Sec. 3.2. The results indicate that SNS exhibits excellent performance in terms of model details, mesh quality, and
registration robustness. The quantitative comparisons are shown in Tab. 2.

hole mask. To enrich the inputs for the refinement network,
we rotate the meshes every 60 degrees, resulting in a total
of 2994 different orientations. We utilized the ICP [8] al-
gorithm to transfer the color of the THuman2.0 scans to the
vertices of our completed result, thereby generating 499 UV
textures for training and obtaining 2994 visible UV masks
from the rotated meshes. The complete UV textures and
visible UV masks are randomly combined as inputs for our
texture diffusion.
Testing data. We conduct quantitative and qualitative eval-
uations on CAPE [43], THuman2.0, and in-the-wild im-
ages. We use CAPE-NFP [62] (100 samples with 3 view-
points for each), and the last 27 subjects of THuman2.0
scans (6 viewpoints, each differing by 60 degrees).

Ours
Completion

Scan Ours Refine
(Iteration = 1)

Ours Refine
(Iteration = 2)

Ours Refine
(Iteration = 3)

Figure 11. The ablation results (with face substitution). We
present the results after completion and refinement. With an in-
creasing number of refinement iterations, the details of the mesh
will be enhanced. Please zoom-in to see more details.

Method GPU P2S↓ Chamfer↓ G-avg↑ θ<30◦ ↓ Time
N-ICP [7] - 0.213 0.163 0.506 55.2 7m 23s
RPTS [35] - 0.488 0.360 0.565 48.3 1m 55s

SVR-L0 [23] - 0.404 0.296 0.531 53.5 1h 23m 32s
Fast-RNRR [67] - 0.115 0.097 0.597 31.1 1m 4s

DR [45]
√

0.339 0.347 0.581 47.7 16m 17s
MDA [30]

√
0.671 0.731 0.587 48.5 4m 48s

Ours (SNS) - 0.107 0.078 0.729 17.3 23s
Ours (Comp)

√
0.139 0.167 0.662 28.9 27s (23 + 4)

Table 2. Quantitative evaluation for registration on THu-
man2.0. We test all the methods on the first subject of THu-
man2.0. Following the previous researches [22, 38], we adapt
G-avg as a method for evaluating the mesh quality. We also re-
port the metric θ<30◦, which denotes the percentage of triangle
meshes in the given mesh that have an angle less than 30 degrees.
Additionally, we present the metrics for our complete mesh.

Networks. The completion net and refinement net are both
trained for 100 epochs with a learning rate of 1×10−6. The
resolutions of the input and output data, including the UV
position maps, images, masks and front-back normal maps,
are all 1024 × 1024 × 3. During inference, the ECON’s
predicted front-back normals (512×512×3) are upsampled
to 1024×1024×3 using bilinear interpolation. The texture
diffusion is trained for 1 epoch with a learning rate of 2 ×
10−5. The sampler of texture diffusion is DDIM [57]. We
use 30 steps by default and infer the texture UV map with a
resolution of 1024× 1024× 3. All the networks are trained
on three NVIDIA RTX 3090 GPUs.
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256x256

Input PIFu DINAR OursPaMIR

1024x1024

Figure 12. Qualitative comparison for texture prediction on in-
the-wild image. We display the front and back view rendering
results for each method. Since PIFu [54] and PaMIR [69] predict
vertex colors, we only exhibit the texture maps of DINAR [58] and
SHERT (ours). Please zoom-in to see more details.

4.2. Evaluation

Quantitative comparisons. We conduct quantitative com-
parisons with mainstream state-of-the-art monocular im-
age reconstruction approaches in Tab. 1. As in previous
work [24, 55, 62, 63], we report the point-to-surface Eu-
clidean distance (P2S, cm), the Chamfer Distance (cm), and
the Normals difference (L2). To ensure a fair comparison,
PIFu∗ [54] and PaMIR∗ [69] are re-implemented and re-
trained on THuman2.0, using the same settings as ICON
[62]. The ground-truth SMPL/SMPL-X models are pro-
vided for evaluation. However, PIFu [54], PIFuHD [55]
and 2K2K [24] do not utilize the parametric body priors,
which may result in subpar performance. In Tab. 1, “ICON-
comp” refers to the completion result achieved by leverag-
ing ICON’s [62] prediction, while “ECON-refine” denotes
the refinement mesh obtained using ECON’s [63] result and
the predicted front-back normal maps. Additionally, we
evaluate the registration quality of SNS against state-of-the-
art non-rigid registration methods, as presented in Tab. 2
Qualitative comparisons. We demonstrate a comparison
between SHERT and state-of-the-art methods using in-the-
wild images, with a focus on monocular image reconstruc-
tion (refer to Fig. 9) and texture prediction (refer to Fig. 12).
Additionally, we compare the registration quality of our
SNS with state-of-the-art non-rigid registration approaches
on Thuman2.0 (refer to Fig. 10).

4.3. Limitations

Due to the geometric limitations of SMPL-X, SHERT per-
forms weaker in reconstructing loose clothing, shoes and
hair compared to implicit-based reconstruction methods. It
is also difficult to ensure consistent results of texture diffu-
sion at the seams of UVs. See more in SupMat.

5. Applications
SHERT uses the skinning weights from SMPL-X to en-
able animated poses, expressions, and gestures on the re-
constructed mesh through LBS [34] (refer to Fig. 13). It
allows for both global texture repainting (refer to Fig. 14)

Figure 13. Animation results. Please zoom-in to see more details.

Origin
pink sweatshirt,
light blue pants,

hiphop style

gray jacket,
blue jeans

woman,
green sweatshirt

sweatshirt,
black pants

Figure 14. Global texture repainting. SHERT can repaint the
texture through text prompts. Please zoom-in to see more details.

Texture map
& Render result

Mask &
Text prompt

Localized repainting
& Render results

cartoon 
embroidery, 
plush material

star pattern, 
colorful star, 
face accessories

Figure 15. Localized texture repainting. SHERT can repaint the
masked area through text prompts. Please zoom-in to see more
details.

and the option for users to provide custom masks and text
prompts for localized texture repainting (refer to Fig. 15).

6. Conclusion
We propose SHERT, which reconstructs a fully textured se-
mantic human avatar from a detailed surface or a monocu-
lar image. It takes advantage of the geometric details of the
target surface, along with semantic information and prior
knowledge of the semantic guider. The reconstructed re-
sults have high-fidelity clothing details, high-quality trian-
gle meshes, clear facial features, and complete hands geom-
etry. SHERT is also capable of generating high-resolution
texture maps with stable UV unwrapping. This approach
bridges existing monocular reconstruction work and down-
stream industrial applications, and we believe it can pro-
mote the development of human avatars.
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